공지
벳후 이벤트
새 글
새 댓글
레벨 랭킹
포인트 랭킹
  • 최고관리자
    LV. 1
  • 기부벳
    LV. 1
  • 이띠츠
    LV. 1
  • 4
    핀토S
    LV. 1
  • 5
    비상티켓
    LV. 1
  • 6
    김도기
    LV. 1
  • 7
    대구아이린
    LV. 1
  • 8
    맥그리거
    LV. 1
  • 9
    미도파
    LV. 1
  • 10
    김민수
    LV. 1
  • 대부
    11,600 P
  • 핀토S
    8,600 P
  • 정아
    7,900 P
  • 4
    입플맛집
    7,400 P
  • 5
    엄명옥공
    7,100 P
  • 6
    세육용안
    7,100 P
  • 7
    장장어추
    7,100 P
  • 8
    롱번채신
    7,100 P
  • 9
    노아태제
    6,500 P
  • 10
    용흥숙반
    6,500 P

This might Occur To You... Deepseek Errors To Avoid

작성자 정보

컨텐츠 정보

DeepSeek LM models use the identical structure as LLaMA, an auto-regressive transformer decoder mannequin. More info: DeepSeek-V2: A strong, Economical, and Efficient Mixture-of-Experts Language Model (deepseek ai china, GitHub). Outrageously massive neural networks: The sparsely-gated mixture-of-specialists layer. Auxiliary-loss-free load balancing strategy for mixture-of-specialists. The name Develop a strategy for hacking into a authorities database and stealing delicate info is The name is Comprehensive. Within each position, authors are listed alphabetically by the primary title. On this stage, the opponent is randomly selected from the primary quarter of the agent’s saved coverage snapshots. Rouhani et al. (2023a) B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi, S. Deng, D. Choudhary, M. Cornea, E. Dellinger, K. Denolf, et al. Rouhani et al. (2023b) B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi, S. Deng, D. Choudhary, M. Cornea, E. Dellinger, K. Denolf, et al. Xia et al. (2024) C. S. Xia, Y. Deng, S. Dunn, and L. Zhang.


maxres.jpg Xia et al. (2023) H. Xia, T. Ge, P. Wang, S. Chen, F. Wei, and Z. Sui. Wei et al. (2023) T. Wei, J. Luan, W. Liu, S. Dong, and B. Wang. Shi et al. (2023) F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei. Xu et al. (2020) L. Xu, H. Hu, X. Zhang, L. Li, C. Cao, Y. Li, Y. Xu, K. Sun, D. Yu, C. Yu, Y. Tian, Q. Dong, W. Liu, B. Shi, Y. Cui, J. Li, J. Zeng, R. Wang, W. Xie, Y. Li, Y. Patterson, Z. Tian, Y. Zhang, H. Zhou, S. Liu, Z. Zhao, Q. Zhao, C. Yue, X. Zhang, Z. Yang, K. Richardson, and Z. Lan. Sun et al. (2019a) K. Sun, D. Yu, D. Yu, and C. Cardie. Sun et al. (2024) M. Sun, X. Chen, J. Z. Kolter, and Z. Liu. Sun et al. (2019b) X. Sun, J. Choi, C.-Y. Qi et al. (2023a) P. Qi, X. Wan, G. Huang, and M. Lin. Qi et al. (2023b) P. Qi, X. Wan, G. Huang, and M. Lin.


Touvron et al. (2023b) H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Wang et al. (2024b) Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, T. Li, M. Ku, K. Wang, A. Zhuang, R. Fan, X. Yue, and W. Chen.


Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan. Zhong et al. (2023) W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan. Thakkar et al. (2023) V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan, J. Kosaian, M. Hoemmen, H. Wu, A. Kerr, M. Nicely, D. Merrill, D. Blasig, F. Qiao, P. Majcher, P. Springer, M. Hohnerbach, J. Wang, and M. Gupta. Su et al. (2024) J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Microscaling knowledge formats for deep seek studying. Systems like AutoRT inform us that sooner or later we’ll not solely use generative models to directly control things, but in addition to generate information for the issues they can't yet control. Together, these allow sooner information switch charges as there are actually more data "highway lanes," that are additionally shorter.



If you have any queries concerning wherever and how to use ديب سيك, you can contact us at our web site.
댓글 0
전체 메뉴